An Update on Measuring $B(\pi^0 \to e^+e^-\gamma) \text{ using}$ $K_L \to 3\pi^0$

Erin Abouzaid
University of Chicago
25 February 2006

Outline

• Current PDG Value

Sample & Statistics

• Systematics & Strategies

PDG Average for π^0 Dalitz Decay

$$\frac{\Gamma(\gamma e^+ e^-)}{\Gamma(2\gamma)} = (1.213 \pm .030)\%$$

From

$$(1.25 \pm .04)\%$$
 Schardt 1981, $\pi^- p \to n \pi^0$

 $(1.166 \pm .047)\%$ Samios 1961, 3071 events, $\pi^- p \to n \pi^0$

 $(1.17 \pm .15)\%$ Budagov 1960, 27 events

No measurements of π^0 Dalitz decay BR for \sim 25 years. The 2.5% uncertainty on the current number affects many other measurements. KTeV has plenty of events to reduce the uncertainty, and this will have a broad impact on other measurements.

Sample & Statistics

- Signal: $K_L \to 3\pi^0$, where one $\pi^0 \to e^+e^-\gamma$
- Normalization: $K_L \to 3\pi^0$ with $\pi^0 \to \gamma\gamma$
- Ideally, use trigger 6 for both, but too restrictive (requires exactly 6 clusters at L3)

Trigger 6 for $K_L \to 3\pi^0$ events, for normalization (prescale by 10)

Trigger 14 for Dalitz decay events

Trigger 14: combination charged & neutral trigger; similar to trigger 1 (charged mode trigger for ϵ'); requires 7 or more HCC, has HA veto

Main criteria for event selection:

- kaon mass: [0.490, 0.505] GeV/ c^2
- kaon z: [123.0, 158.0] m
- kaon energy: [40.0, 160.0] GeV
- min cluster energy: 3.0 GeV
- NEW: cell separation cut of 3

Imposing a cellsep cut is result of needing to know tracking efficiency very well; tracking efficiency was studied for well-separated tracks for V_{us} , so cellsep cut allows us to use results of those studies. However, cut reduces event sample by factor of \sim 3, and the statistical uncertainty will be \sim 0.35%.

Cell Separation Cut and e^+e^- Mass

Also, note that e^+e^- mass resolution is ~ 1 MeV.

Systematics & Strategies: Cut Variations

Normalized Ratio of Branching Ratios For Slices in Kaon Z

Normalized Ratio of Branching Ratios For Slices in Kaon Energy

Normalized Ratio of Branching Ratios For Variations of Cell Sep Cut

Systematics & Strategies: Trigger Efficiency

Run dalitz analysis on random accepts from trigger 6 (QKS tapes) and check that those events that reconstruct as dalitz decays show up in trigger 14.

- Using nominal cuts, not many events
- First pass → inefficiency of 1/200
- Want to loosen cuts to improve statistics, but this requires dealing with some trigger verification issues

Systematics & Strategies: Radiative Corrections

First step: I generated signal MC with no radiative corrections to compare with my nominal MC.

The acceptance changes by $\sim 5\%$. However, several distributions show significant discrepancies when radiative corrections are neglected.

For example, the π^0_{dalitz} mass peak shifts by \sim 20 sigma, so the acceptance uncertainty due to radiative corrections will be much less than 0.5%.

Systematics & Strategies: Form Factor

First step: vary the form factor via the pi0_slope_param to see the effect on acceptance.

HOWEVER: dalitz parameters are never initialized in 832, so all my old MC was generated with no form factor.

Back to step zero: I fixed this in my MC code, and generated MC with nominal form factor (pi0_slope_param = $.032\pm.004$). I compared the acceptance from old MC (presumably pi0_slope_param = 0) with new: change is less than 1%.

Acceptance is very insensitive to the form factor!

Next step: Generate MC with pi0_slope_param shifted by, say, one sigma, and see what the effect is.

Still need to think about whether we can/want to make a form factor measurement.

Note that radiative corrections study was done prior to finding this bug; it shouldn't matter much, but it will be redone with the nominal form factor.

Systematics & Strategies: Tracking Efficiency

Use the studies from V_{us} , which are valid when we apply a cellsep cut.

Plot from Branching Ratio paper from a study on tracking inefficiency as a function of track separation at DC1. Cell separation cut of 3 half-cells corresponds to \sim 2 cm.

Also, I am in the process of studying tracking efficiency as a function of intensity.

Systematics & Strategies: Background

Background is very small, but we need to study it. The main source is photon conversions.